Handbook of Zeolite Science and Technology

Edited by

Scott M. Auerbach
University of Massachusetts Amherst
Amherst, Massachusetts, U.S.A.

Kathleen A. Carrado
Argonne National Laboratory
Argonne, Illinois, U.S.A.

Prabir K. Dutta
The Ohio State University
Columbus, Ohio, U.S.A.
Preface

Zeolite science and technology continues to make rapid advances across several fronts, including synthesis, characterization, and novel applications. Although traditionally rooted in inorganic solid-state chemistry, modern zeolite science and technology cuts a wide swath through many fields, including organic and physical chemistry, reaction and fluid engineering, spectroscopy, and condensed matter physics, to name a few. On top of this, zeolite science and technology has its own complex and often inconsistent nomenclature. In 1974, the late Donald W. Breck wrote the book *Zeolite Molecular Sieves: Structure, Chemistry, and Use*, which demonstrated in one monograph the breadth of zeolite science and technology, and to this day is considered the textbook on zeolites. Although many excellent books and review articles have been written on the subject since then, there remains the need for single publications that provide comprehensive coverage, fundamental principles, and in-depth views of the current status of zeolite science and technology. This *Handbook of Zeolite Science and Technology* is our attempt to fill this void. We feel that the contents of this book will offer value to both the novice and the expert.

Zeolite-based catalysis remains one of the driving forces for the development of the field. As there are several excellent monographs in this area, however, we have decided to focus only on basic mechanistic aspects of catalysis, from both theoretical and experimental points of view. We also emphasize less traditional aspects of zeolites, including host–guest chemistry and novel applications, which will almost certainly contribute to developments in electronics, communications, medicine, and environmental science.

The book is divided into five parts. In Part I, Chapter 1 offers a brief description of zeolites—their synthesis, characterization, and applications. Part II contains four chapters that focus on synthesis and structural aspects. Zeolite synthesis is an extremely broad area of research. Chapter 2 focuses primarily on one framework: MFI (ZSM-5 and silicalite), probably the most extensively studied zeolite. Chapter 3 deals with basic aspects of structural analysis. Chapters 4 and 5 examine crystal growth from a theoretical, first-principle perspective, as well as from correlating experimental data with microscopic models of synthesis.

Part III deals with characterization of zeolites. Magnetic resonance spectroscopies are discussed in Chapters 6 and 7, followed by electron microscopy in Chapter 8. Chapters 9 and 10 focus on adsorption and diffusion of molecules in zeolites—areas of considerable
importance in both condensed matter physics and practical applications of zeolites. Chapter 11 covers vibrational spectroscopies.

Part IV deals with host–guest chemistry in zeolites. There is considerable interest in light-initiated chemical transformations of molecules in zeolites, and advances in this relatively new field are summarized in Chapters 12 and 13. Also of recent vintage is the development of electrochemistry of molecules in zeolites, as discussed in Chapter 14. Chapter 15 focuses on chemical transformations in zeolites, which is central to zeolite catalysis, and explains recent trends in modeling reactivity within zeolites.

Part V, the largest part of the Handbook, covers applications. Chapter 16 covers the important catalytic reaction of methanol conversion and details the latest mechanistic developments. Chapter 17 discusses zeolitic membranes, now beginning to find important industrial applications. Chapter 18 explores electronic materials based on zeolites, which are expected to play an important role in the next generation of electronic devices. Chapters 19 and 20 discuss environmental applications of zeolites, primarily in emission control. Chapters 21 and 22 outline the principles and practices of two important application areas: ion exchange and gas separation. Chapter 23 explores the modeling of zeolite applications from an engineering perspective. Chapter 24 demonstrates the potential medical applications of zeolites, some of which are just being realized.

In addition to facilitating cross-fertilization among different subfields of zeolite science and technology, we hope that this book welcomes the next generation of researchers into the field, to tackle problems in a remarkably exciting and fruitful subject.

We would like to take this opportunity to thank all the contributors to this Handbook—we hope they will be pleased to see that our collective venture is much greater than the sum of its parts. This is also an opportunity to thank the editors at Marcel Dekker, Inc.: Anita Lekhwani, who first saw the light, and Joe Stubenrauch and Karen Kwak for a most professional finish. We also thank our spouses (Sarah Auerbach, Joseph Gregar, and Lakshmi Dutta) for their support. Finally, though this book has been a labor of love for all concerned and its publication is a joyous event, we are saddened that Larry Kevan, a strong supporter of the project and a contributor to this volume, is no longer with us. Larry was an exceptional zeolite chemist and a very good friend—we miss him and dedicate this book to his memory.

Scott M. Auerbach
Kathleen A. Carrado
Prabir K. Dutta
Contents

Preface
Contributors

Part I Introduction

1. Zeolites: A Primer
 Pramatha Payra and Prabir K. Dutta

Part II Synthesis and Structure

2. MFI: A Case Study of Zeolite Synthesis
 Ramsharan Singh and Prabir K. Dutta

3. Introduction to the Structural Chemistry of Zeolites
 Raúl F. Lobo

4. Modeling Nucleation and Growth in Zeolites
 C. Richard A. Catlow, David S. Coombes, Dewi W. Lewis,
 J. Carlos G. Pereira, and Ben Slater

5. Theoretical and Practical Aspects of Zeolite Crystal Growth
 Boris Subotić and Josip Bronić

Part III Characterization

6. Nuclear Magnetic Resonance Studies of Zeolites
 Clare P. Grey
7. Electron Spin Resonance Characterization of Microporous and Mesoporous Oxide Materials
 Larry Kevan

 Osamu Terasaki and Tetsu Ohsuna

9. Simulating Adsorption of Alkanes in Zeolites
 Berend Smit and Rajamani Krishna

10. Diffusion in Zeolites
 Jörg Kärger, Sergey Vasenkov, and Scott M. Auerbach

11. Microporous Materials Characterized by Vibrational Spectroscopies
 Can Li and Zili Wu

Part IV Host–Guest Chemistry

 Jayaraman Sivaguru, Jayaramachandran Shailaja, and Vaidhyanathan Ramamurthy

13. Photoinduced Electron Transfer in Zeolites
 Kyung Byung Yoon

 Alain Walcarius

15. Reaction Mechanisms in Zeolite Catalysis
 Xavier Rozanska and Rutger A. van Santen

Part V Applications

 James F. Haw and David M. Marcus

17. Synthesis and Properties of Zeolitic Membranes
 Sankar Nair and Michael Tsapatsis

18. Molecular Sieve-Based Materials for Photonic Applications
 Katrin Hoffmann and Frank Marlow

19. Zeolites in the Science and Technology of Nitrogen Monoxide Removal
 Masakazu Iwamoto and Hidenori Yahiro

Copyright © 2003 Marcel Dekker, Inc.
20. Waste Gas Treatment Using Zeolites in Nuclear-Related Industries
 Jun Izumi

21. Ion Exchange
 Howard S. Sherry

22. Gas Separation by Zeolites
 Shivaji Sircar and Alan L. Myers

23. Modeling Issues in Zeolite Applications
 Rajamani Krishna

24. Medical Applications of Zeolites
 Krešimir Pavelić and Mirko Hadžija
Contributors

Scott M. Auerbach, Ph.D. Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts, U.S.A.

Josip Bronić, Ph.D. Division of Materials Chemistry, Rudjer Bošković Institute, Zagreb, Croatia

Kathleen A. Carrado, Ph.D. Chemistry Division, Argonne National Laboratory, Argonne, Illinois, U.S.A.

David S. Coombes, Ph.D. Davy Faraday Research Laboratory, The Royal Institution of Great Britain, London, United Kingdom

Prabir K. Dutta, Ph.D. Department of Chemistry, The Ohio State University, Columbus, Ohio, U.S.A.

Clare P. Grey, D.Phil. Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York, U.S.A.

Mirko Hadžija, Ph.D. Division of Molecular Medicine, Rudjer Bošković Institute, Zagreb, Croatia

James F. Haw, Ph.D. Department of Chemistry, University of Southern California, Los Angeles, California, U.S.A.

Katrin Hoffmann, Ph.D. Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
Vaidhyanathan Ramamurthy, Ph.D. Department of Chemistry, Tulane University, New Orleans, Louisiana, U.S.A.

Xavier Rozanska, Ph.D. Shuiz Institute of Catalysis, Laboratory of Inorganic Chemistry and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands

Jayaramachandran Shailaja, Ph.D. Department of Chemistry, Tulane University, New Orleans, Louisiana, U.S.A.

Howard S. Sherry, Ph.D. Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, New Mexico, U.S.A.

Ramsharan Singh, Ph.D. Department of Chemistry, The Ohio State University, Columbus, Ohio, U.S.A.

Shivaji Sircar, Ph.D. Department of Chemical Engineering, Lehigh University, Bethlehem, Pennsylvania, U.S.A.

Jayaraman Sivaguru, M.Sc. Department of Chemistry, Tulane University, New Orleans, Louisiana, U.S.A.

Ben Slater, Ph.D. Davy Faraday Research Laboratory, The Royal Institution of Great Britain, London, United Kingdom

Berend Smit, Ph.D. Department of Chemical Engineering, University of Amsterdam, Amsterdam, The Netherlands

Boris Subotić, Ph.D. Division of Materials Chemistry, Ruder Bošković Institute, Zagreb, Croatia

Osamu Terasaki, D.Sc.* Department of Physics, Tohoku University, Sendai, Japan

Michael Tsapatsis, Ph.D. Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts, U.S.A.

Rutger A. van Santen, Ph.D. Shuiz Institute of Catalysis, Laboratory of Inorganic Chemistry and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands

Sergey Vasenkov, Ph.D. Department of Physics and Geosciences, Leipzig University, Leipzig, Germany

Alain Walcarius, Ph.D. Laboratory of Physical Chemistry and Microbiology for the Environment, Centre National de la Recherche Scientifique (CNRS)-Université Henri Poincaré (UHP) Nancy I, Villers-lès-Nancy, France

*Current affiliation: Structural Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, Sweden.
Zili Wu, Ph.D. State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China

Hidenori Yehiro, Ph.D. Department of Applied Chemistry, Ehime University, Matsuyama, Japan

Kyung Byung Yoon, Ph.D. Department of Chemistry, Sogang University, Seoul, Korea